If it's not what You are looking for type in the equation solver your own equation and let us solve it.
c^2=1753
We move all terms to the left:
c^2-(1753)=0
a = 1; b = 0; c = -1753;
Δ = b2-4ac
Δ = 02-4·1·(-1753)
Δ = 7012
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7012}=\sqrt{4*1753}=\sqrt{4}*\sqrt{1753}=2\sqrt{1753}$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{1753}}{2*1}=\frac{0-2\sqrt{1753}}{2} =-\frac{2\sqrt{1753}}{2} =-\sqrt{1753} $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{1753}}{2*1}=\frac{0+2\sqrt{1753}}{2} =\frac{2\sqrt{1753}}{2} =\sqrt{1753} $
| 16z+2=50 | | 9x+6-4x-2x+(-15)=0 | | 2x-5(x-2)=-7+5x-31 | | 3x+2=62-7x | | 57+x=x+87+50 | | X=2+-3x | | 3.2y=-9.6 | | 5y-12=2(y-3) | | -6x+9=3x-99 | | 0=x2+12x+27 | | 4x+22=2x+5 | | n/3;n=39 | | 11-5a=-9a+2 | | x/3+4=x/5-2 | | 6x+4-x=2(x+@ | | 15.6/p=-7 | | 2y2-17y+21=0 | | 1-5x-x=5 | | 8z+19=7z+8 | | 3x+7=-6x-53 | | 3-n=6n+24 | | 89=c^2 | | 7+3(2x+1)=14 | | 12x2+5x+3=0 | | 30-3.50g=9 | | 17=-4/3x-5 | | 10k2+5=-94 | | 8x−39=41 | | x+38=3x-12 | | 4n-9=8n-5 | | 4(n-4)-2(n-2)=-8n | | (2x)(3x)(-2x)=0 |